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Abstract

A thin cylindrical ceramic sample is placed in a single mode microwave
applicator in such a way that the electric field strength is allowed to vary
along its axis. The sample can either be a single rod or two rods butted
together. We present a simple mathematical model which describes the mi-
crowave heating process. It is built on the assumption that the Biot number
of the material is small, and that the electric field is known and uniform
throughout the cylinder's cross-section. The model takes the form of a non-
linear parabolic equation of reaction-diffusion type, with a spatially varying
reaction term that corresponds to the spatial variation of the electromagnetic
field strength in the waveguide. The equation is analyzed and a solution is
found which develops a hot spot near the center of the cylindrical sample
and which then propagates outwards until it stabilizes. The propagation and
stabilization phenomenon concentrates the microwave energy in a localized
region about the center where elevated temperatures may be desirable.
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1. Introduction.

The use of microwaves to sinter or join ceramics is rapidly gaining accep-
tance in industry where the efficient production of high quality materials is
important. Efficiencies are increased because microwaves penetrate a ma-
terial and rapidly deposit energy there, in direct contrast to conventional
heating schemes where heat diffuses into a material from its surface. The
price paid is the need of control systems to prevent thermal runaway and
other related instabilities.

The control and dependability of these processes requires a deep under-
standing of the inherent physics which are described by a formidable nonlin-
ear initial boundary value problem. This is comprised of the time-harmonic
version of Maxwell's equations, the heat equation, an equation of state re-
lating the effective electrical conductivity to the temperature, and a thermal
boundary conditions on the surface of the ceramic material which balances
conduction, convection, and thermal radiation. The nonlinear character
arises from the dependence of the electric field upon the effective electri-
cal conductivity, which is a function of the temperature, the dependence of
the temperature upon the microwave power deposition, which is proportional
to the product of the effective electrical conductivity and the the magnitude
of the electric field squared, and the radiative heat loss, which varies as the
fourth power of the temperature. In addition, the boundary value charac-
ter of the problem is also challenging because the electromagnetic fields and
the ceramic material are confined in a cavity or waveguide applicator of a
complicated geometry.

The systematic analysis of these equations under a variety of physical lim-
its has primarily been restricted to one dimensional geometries (see reference
4 and the bibliography therein), but has recently been extended to three di-
mensions [4] in the small Biot number limit. However, in all these cases
the effect of the waveguide applicator or cavity were neglected, i.e., the ce-
ramic samples were irradiated by plane waves in free space. Nonetheless, the
small Biot number theory predicts the phenomenon of thermal runaway and
suggests methods for its control. ,r

The problem we model and study in this paper is concerned with sintering 21
and joining of ceramic fibers in a microwave applicator. As such, it is not 0
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described by the theories mentioned above, because of the applicator and also
because of the small aspect ratio a/d of the fibers. In this paper. we take
into account the effects of the applicator by assuming that the electric field is
uniform throughout the cylinder's cross-section and known along its length.
That is, the ceramic cylinder is thin enough not to perturb the electric field
to leading order. Thus, the heating process will be modeled by a nonlinear
heat equation and boundary condition.

There are three small parameters that arise from a dimensional analysis
of the simplified model problem. The first is the aspect ratio defined above,
the second is the Biot number B 1, which is a measure of convective heat loss
at the surface, and the third is B2 is a measure of radiative heat loss there.
As described above, we have developed an asymptotic theory to study the
microwave heating of ceramic slabs and other compact geometries [3,4] as
B1 -+ 0. In these studies B2 - B1 so that both physical effects of radiation
and convection have been incorporated into the theory. This asymptotic
theory can be employed to analyze the present problem with the proviso
that the parameter e2 = (a/d)2 /B 1 is order one. The net result is that
the temperature remains spatially uniform across the ceramic's cross-section
and satisfies a nonlinear reaction-diffusion equation along its length. In this
equation the reaction term accounts for adsorption of microwave energy and
loss of thermal energy, which arises from convection and radiation at the
sample boundaries, and the diffusion coefficient is e2. The later will be taken
as small (which is the case for fibers) to allow an analysis of this equation.

Two types of problems naturally arise depending upon the orientation
of the ceramic cylinder in the applicator. If the sample is placed so that
the electric field has no spatial variation along its axis, then the reaction-
diffusion equation has constant coefficients. Equations of this type have
received considerable study because of their applicability in a wide variety of
physical settings [9]. That the present equation supports traveling transition
layers comes as no mathematical surprise. However, in the present physical
context it does explain the mechanism for the formation and propagation of
hot-spots [5,6] which are seen in experiments [8,11].

On the other hand, if the ceramic fiber is placed so that the electric field
varies along its axis, then the equation has a spatially varying reaction term.
The analysis and understanding of the solutions of these types of equations
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are less well understood than those described above [1]. We shall analyze the
equation below using standard matched asymptotic methods and show how
its solution evolves into a hot spot, propagates outward from its inception,
and stabilizes to form a region of elevated temperature. This stable region of
elevated temperature can be exploited in fiber sintering and has already been
used in joining processes [2]. Moreover, our analysis shows how the size of
the spot depends upon the temperature dependence of the material's thermal
properties. These dependencies are often ignored because the experiments
are more sensitive to changes in the effective electrical conductivity with
temperature. However, they are essential in understanding the final width
of the spot.

2. Formulation.

A thin cylindrical ceramic sample is positioned in a single mode waveguide
applicator, so that the electric field along its axis varies as the fundamental
mode of the waveguide. The sample is held in place at its ends by two
thermally insulated, microwave transparent push-rods. Although the electric
field is altered by the presence of the ceramic, for the present analysis we
assume that this effect is negligible and that the time-harmonic electric field
is given by

E = Eosin(7rZ/d)j (1)

where d is the height of both the cylinder and the guide, E0 is the strength
of the incident mode, and j is a unit vector perpendicular to the axis of
the cylinder. This assumption effectively decouples the equations for the
electromagnetic field from the equation for the energy of the sample, and
allows us to focus solely on the sample's thermal field. In addition, we assume
that the sample is thin enough to ensure that variations in the electric field
are negligible across its circular cross-section.

In light of these assumptions, the temperature, T, satisfies the energy
equation

-G(pCpT) = (KVT) + ET sin 2 (irZ/d), 0 < Z < d, 0 < R < a
5(22 (2)



where R = V/X 2 ± Y2 is the radial distance from the cylinder's axis, p is the
density of the ceramic, Cp is its specific heat, K is its thermal conductivity,
a is its effective electrical conductivity, and a is the radius of the sample.
Although variations of the thermal parameters K and Cp are small over the
temperature range required for sintering or joining when compared to the
change in the electrical conductivity, they are included in the following anal-
ysis, since they may have a profound effect on the dynamics of the heating
process.

We also require that the temperature satisfies the surface heat balance

K T+h(T - TA) + se(T4 - T4) =O, R=a, O<Z<d (3a)

where h is a constant corresponding to heat loss from the surface by convec-
tion, s is a constant for radiative heat loss, e is the emissivity of the surface,
and TA is the ambient temperature of the surrounding medium. To simplify
the analysis that follows, we assume that the ambient temperature remains
constant. At the ends of the sample, we prescribe the boundary conditions

aa T = 0, Z=O,d; and O<R <a (3b)

and we take the initial temperature of the sample to coincide with the am-
bient temperature, i.e.,

T(X, Y, Z, O) = TA. (4)

Equations (2)-(4) constitute a nonlinear initial boundary value problem for
the temperature T within the sample. The nonlinear character of this sim-
plified problem is caused by the dependence of the electrical conductivity a
and thermal parameters K and Cp on the temperature and by the radiative
losses at the sample boundary. This is the generalization of the mathemat-
ical models for microwave heating as studied by Tian using finite difference
simulations (10] and by Kriegsmann using asymptotic methods [5,6].

4



3. The Simplified Theory.

There are three small parameters that arise from the nondimensionaliza-
tion of equations (2-4). The first is the Biot number B, = ha/KA, where
KA = K(TA) is the value of the thermal conductivity at the ambient temper-
ature TA, and the second is B 2 = seaTA IKA. The former is a measure of the
relative effects of convection and conduction and the latter is a measure of
the relative effects of radiation and conduction. Typical values of B, and B 2
for ceramics are of the order of 0.01, see, e.g., [7]. The third small parameter
is the fineness or aspect ratio of the cylinder a/d.

In recent studies [3,4] of the microwave heating of ceramic slabs and other
compact geometries we have utilized the size of these three parameters to
obtain an asymptotic approximation to the temperature. Similar methods
can be employed for the nonlinear initial boundary value problem (2-4) but
will not be reported in detail here. The result of this analysis is that, as
B, --+ 0 with B2 /B1 held fixed (so that the effects of radiation and convection
are of equal importance) and with (a/d)2 /B 1 held fixed, the temperature of
the sample T is given by

T(X, Y, Z, t) = U(Z, t) ± O(B1 ) (5)

where U(Z, t) is the leading order approximation to the temperature, which
is independent of the cross-sectional or transverse coordinates X and Y, and
O(Bi) represents a contribution which is of the same (small) order as B1 .
We note that this O(B 1 ) error term does depend upon X and Y and thus
represents a small nonuniform heating across the cross-section of the sample;
the term will not be calculated here.

The leading order term U(Z, t) of (5) satisfies the dimensionless initial
boundary value problem

a--((l+u)) = F2 a-(k --- u)+pf(u)sin 2 (7rz)-2{u+a[(u+1) 4-1]1, 0 <z< 1,

(6a)
where the boundary conditions (3b) and initial condition (4) become, respec-
tively, a49zU = 0, z=O, 1 (6b)

az
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u(z,0) = o, 0< z < 1. (6c)

In arriving at equations (6a-c) we have introduced the dimensionless variables

U h
z = Z/d, u= A -- 1, 77-- = p t (7a)

TA a~pUp)A

where Z is nondimensionalized with respect to the cylinder length d, u is the
relative deviation of T from TA, and t is nondimensionalized with respect
to the ambient convective time a(pCp)A/h. We have also introduced the
dimensionless parameters

acTAE B 2  C2= (a/d)2  (7b)
2hTA =B B-

and the dimensionless functions
f(u) = o((TA(1 + u)), k = g/gA, r- pcp (7)

C (PeP)A

where CA = o(TA) is the effective electrical conductivity at the ambient
temperature, a is the ratio of the convective and radiative Biot numbers,
and p is a dimensionless power.

The nonlinear initial boundary value problem (6) constitutes the mathe-
matical statement of our small Biot number theory for the heating of the
ceramic rod.

4. Analysis.

We note here that in some applications where ceramic fibers are sintered
in a single mode applicator [11] the parameter E is very small. For other
experiments such as joining, e may not be as small. The asymptotic limit
e --+ 0 is quite relevant in the former case and is expected to give qualitative
results in the later. In mathematical terms, the theory which follows is
strictly valid for the ordering B 1 << e2 << 1. That is, B 1 << a/d << « /B_-1,
so that the diffusion term in (6c) is larger than the neglected terms of O(B 1 ).
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Setting e = 0 in (6a), we obtain the ordinary differential equation

+u)) =pf(u)sin2 (rz) -2{u+ a[(u+1)4 - 1+} (8)

the solution of which depends upon z parametrically and satisfies the initial
conditions (6c).

A reasonable model for the effective electrical conductivity leads to the
function f being given by the Arrhenius-like law [12]

f(u) = 1 + Ce-c2/U (9)

where c, and c2 are constants. If we fix z and define P = psin2 (7rz), then the
solution of (8) and (6c) increases monotonically from its initial value u = 0
to a terminal value v, which is given implicitly by the solution of

P = G(v) =_ 2{v + a[(v + 1)4- 1]} (10)
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A graph of G(v) is shown in Figure 1, from which we deduce that there can
be either one or three solutions of (10) depending upon the value of P. If
P < G,, then the terminal solution v lies on the lower branch, whereas if
P > GM then it lies on the upper branch. If G,, < P < GM, then there are
three solutions; one on the upper branch, another on the lower branch, and
the third solution on the middle branch. A simple analysis of (8) shows that
solutions on the upper and lower branches are stable, and that solutions on
the middle branch are unstable.

We observe that, because of the spatial variation of the power P along the
axis of the waveguide and sample, at different points along its axis the ce-
ramic sample experiences different values of P, and so there is the possibility
that a steady temperature distribution may be on the upper branch in one
part of the sample while it is on the lower branch in the remainder. This is
indeed the case if we take the dimensionless power p > GM. If we define z,
by 1

z -arcsin( G-MM/p) and z2 = 1- Zl, (11)Ir

then P > GM in the interval z, < z < z2 , and a steady temperature distri-
bution in that part of the sample must lie on the upper branch. We have
sketched this in Figure 2.

If we try to resolve the discontinuity in this steady state approximation by
introducing boundary layers at zl and z2, within which the diffusion term of
(6a) is important, then we are immediately struck with the disconcerting fact
that such a solution does not exist. To see this, we introduce the stretchedZ- Z11
variable i = into (6a), set - = 0, and obtain

f 4977

d d
-(ku) + f(u)[GM - G(u)] = 0, 1 <co (12a)
df d



FIGURE 2
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where G is defined in (10). The boundary conditions for this equation are
deduced by asymptotic matching of its solution as 2 --+ ±oo with solutions of
(10). We find from a straightforward analysis that u --+ v. + o(1) as 2 -4 00

where v, is the value of u on the upper branch corresponding to GM (see
Figure 1). We deduce from a similar analysis that u --- vM + - as 5 --- --.
In either case we have

d-uO--0 as 00oo. (12b)

d
Upon multiplying (12a) by k-zU, integrating the result from ±-0o, and using

(121)) we obtain

" k(u)f(u)(Gm - G(u)] du = 0. (13)

However, from the definition of GM we deduce that since VM < U < vU the
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integrand is positive so that (13) call not be true, and a steady solution of
this type does not exist.

We resolve this apparent contradiction by removing the constraint that
a- = 0 in the above analysis. That is, we shall look for a traveling wave

solution of (6a) which has the form

z -z C(r)
u = ) where z = and r = eq. (14)

Inserting this ansatz into (6a) we obtain, at leading order,

d--(kd¢)+ C'1 (r(1 + 0)) + f(4)[psin 2 7r(zl + C) - G(O)] = 0 (15a)

where the prime on C denotes a derivative with respect to its slow time
argument -r = e•r, and the equation is to be solved on the interval -oo <
2 < co. We deduce similar boundary conditions to the above and find again
that, as in (12b),

d •€-,0as • - +oo. (155)

Now however, asymptotic matching implies that the solution ¢ has the limits

0 -4 0+(C) as 2 --+ ±oo, (15c)

where 0+(C) > 0-(C) are those roots of psin2 (z1 + C) = G(O) which lie on
the upper and lower branch of the S-shaped response curve of (10), respec-

dtivehy. Multiplying (1ha) by k•-•¢ integrating the resulting expression, and

applying (15b) and (15c), we deduce that

= f,_(() k(O)f(O)[psin 2 7r(z, + C) - G(O)]d d(

C-0 d (6
f_• k(O)(-d )2[r + F(1 + g)d,

where the dot above F denotes its derivative with respect to 0.
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Equation (16) is a first order nonlinear ordinary differential equation for
the position of the slowly moving traveling wave, or front, which has the
initial condition C(O) = 0 and connects the solutions on the upper and lower
branches of (10). We note that the dependence of the right hand side oil C is
implicit, and, in particular, the integrand in the denominator depends upon
C through the solution of the boundary value problem (15).

We can now deduce the dynamics of the heating process when p > GM, by
using (16). Initially, the rod heats according to (8), so that a discontinuous
temperature profile begins to form, with discontinuities at z = z1 and z = z2
and a hot spot, where z, < z < z 2 , as shown in Figure 2. At this point in
time, considering the dynamics of the left half of the sample 0 < z < 1/2
alone since the solution is symmetric about the sample's midpoint z = 1/2,
C = 0 and from (16) C' is negative, if we assume that the term r+F(I+d) >
0 as will be the case for physically realistic applications. Thus, C decreases,
and the front begins to move to the left, from z = zj. This elevates a larger
portion of the rod to the higher temperatures of the upper branch, i.e., the
hot spot begins to grow.

This description is given under the proviso that

d r(o)(1 + 0) >0d0

which, from the definitions of 0 and r, is equivalent to the statement that
the internal energy density of the ceramic, pCpT, is an increasing function of
the temperature. This is true in ceramics and in almost all materials, away
from phase transitions.

We now turn to the further development and stabilization of the hot spot.

Noting the definitions of ý±(C), it follows that the derivative with respect
to C of the numerator oil the right hand side of (16), i.e.,

O+(C)

N =j k(O)f(4)[psin 2 7r(zi + C) - G(O)] dq, (17)

is
-aN = rp 0 k(4.)f(0)sin21r(z, + C)du, (18)
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which is strictly positive, since 0 < z1 + C < 1/2, and k and f are positive.
Also, since 0+(0) = v., 0-(0) = VM, anid CM = psin2 (7rz- ), we deduce from
(17) that N(O) > 0. Similarly, if we define C so that G,,. = psin 2 ir(zI + C),

then 0+(0) = v,,, 0_(e) is the corresponding point on the lower branch of

the S-shaped curve, and consequently N(C) < 0. Hence, there is a unique
C = C. < 0 such that N(C.) = 0. Since the denominator, D(C), of (16) is,
for the reasons given above, strictly positive, we deduce that the solution of
the differential equation C' = -N(C)/D(C) with initial condition C(O) = 0
is monotone decreasing and tends to C. as r --+ oo, with its final approach
being exponential in r. Thus, the hot spot grows in size and finally stabilizes

to occupy the region z1 + C. < z < 1 - Zl - C..
We can now consider the influence of a temperature-dependent thermal

conductivity on the equilibrated value C.. First we recall that C. is such
that

0•+(C.)
N(C.) = k(,)f()[p sin2 7r(zi + C.) - G(O)l d¢ = 0, (19)

0 -_(C.)

and consider the case when the thermal conductivity is constant, so that
k(¢) = 1. Then, since 0-(C) and 0+(C) are such that the local power at
the boundaries of the hot spot P = p sin 2 (z1 + C.) = G(¢+(C.)), the graphs
of f(u)G(u) and Pf(u) intersect transversally at u = 0-(C.), u = 0+(C.),
and, from (19), also at some value between, i.e., on the interval 0-(C.) <
u < 0+(C.). Equation (19) implies that the unique value C. is such that
the areas of the two lobes between the graphs of f(u)G(u) and Pf(u) are
equal. When k(O) is not constant but, for example, is a monotone increasing
function of 0 with k(0) = 1, as is the case for typical ceramics, the influence
of the temperature-dependence with C fixed is such as to increase the area
of the right hand lobe (at larger 0) more than that of the left hand lobe.a
This increases N(C), so that, since a-N > 0, the temperature-dependence

of k is such as to decrease the equilibrating value C. to more negative values,

and hence increase the final width of the hot spot in the steady state.
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5. Conclusion.

The implications of the analysis for the sintering of ceramic fibers and
joining of ceramic cylinders is now evident. In the first case, the hot spot
forms, propagates, and then stabilizes. If the temperature in the relatively
warm region of the hot spot is sufficient for sintering, then the fiber can
be slowly pulled through the guide, thus insuring that the entire sample is
processed. This is used as a means of sintering ceramics in practise [11], and
the rate at which the fiber is to be drawn is found experimentally. In the
second case, the hot spot is to encompass the butt joint at which the two
ceramic cylinders are to be joined, and, if the temperature in this region is
sufficient for the materials to fuse, then a strong joint can be obtained [2].

We close by briefly describing another type of solution that is possible if
the applied electric field has a minimum at the center of the fiber. This may
occur by exciting the applicator in one of its higher spatial modes. If the
maximum of the electric field is such that P > GM and the minimum is such
that P < GM, then hot spots will form at both ends of the fiber. These
spots will grow in size and stabilize according to the mechanism described
at the end of the last section.
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